摘要
交通流量预测作为智能交通系统(ITS)的重要任务之一,受到极大关注,其常被建模为时空序列预测问题,准确把握交通数据的时间-空间相关性成为了解决此问题的关键,现有的工作往往采用循环神经网络以捕获时间依赖性,采用图卷积网络以捕获空间依赖性,两者尚未有机的结合且捕获时空依赖的能力有限,导致预测精度不佳。本文提出了用于交通预测的基于自相关注意力和动态卷积的时空网络(AADCSN),设计采用类Transformer架构,结合自相关注意力与动态学习图卷积有效捕获交通数据的时间特征与空间特征,并引入数据蒸馏技术和多种嵌入表示有效提升预测性能。论文选用4个真实数据集和9个先进的基线方法进行比较,实验结果表明,本文提出的模型在几乎所有对比指标上都优于基线模型。
- 单位