摘要
古籍汉字图像检索是古籍汉字研究的有效工具.然而,古籍汉字字形复杂、书写风格多变的特点导致传统文字图像检索技术在应用于古籍汉字图像时效果欠佳.针对现有方法在古籍汉字图像特征提取时存在的字形结构细节信息和低层视觉特征提取问题,设计了一种融合空间注意力和通道注意力网络高低层特征的古籍汉字图像检索模型.首先,融合空间注意力的低维特征和通道注意力的高维特征,捕捉古籍汉字空间结构间的依赖关系,提取更丰富的古籍汉字语义特征信息;其次,构建inception残差结构模块,丰富古籍汉字图像特征的感受野,使网络模型更易优化,保留足够的古籍汉字细节信息;最后,运用加权交叉熵损失函数,解决数据集中存在的正负样本不平衡问题,增强检索模型的鲁棒性.在上下、左右、包围和独体结构古籍汉字图像数据集上检索实验的MAP(mean average precision)值分别为77.89%、79.89%、78.21%、80.75%,表明了方法的有效性.
- 单位