摘要

针对影响芒果产量的相关气象要素繁多,它们与产量之间的关联关系复杂、难以用数学函数准确地描述的问题,提出一种基于自注意力机制具有长短期记忆功能的双向门控循环单元和卷积神经网络组合(Self-attention CBiGRU)模型。首先,利用CNN卷积层(1D CNN)提取局部特征;其次将Self-attention机制用于进一步提取依赖特征,然后双向门控循环单元(BiGRU)会充分考虑年份之间的关联性,学习长期依赖特征;最后,利用广西某地3个气象站所收集到的24个芒果生产周期年份(从前一年第22旬到当年第21旬)每旬9个气象要素及芒果产量数据进行分析建模,建立了芒果产量预测Self-attention C-BiGRU模型。实验结果表明,Self-attention C-BiGRU模型预测的产量与实际产量的均方根误差为10.67,比支持向量回归(SVR)、误差后向传播神经网络(BPNN)、门控循环单元(GRU)、基于注意力机制的双向门控循环单元(BiGRU-Attention)、门控循环单元和卷积神经网络组合模型(GRU-CNN)、双向门控循环单元和卷积神经网络组合模型(C-BiGRU)分别平均降低了37.7%、42.1%、17.6%、4.1%、5.3%和5.9%。Selfattention C-BiGRU模型具有较高的预测准确性,对提升广西芒果产业发展、推进农业信息化有重要意义。