摘要
提出基于量子加权门限重复单元神经网络(Quantum Weight Gated Recurrent Unit Neural Network,QWGRUNN)的旋转机械性态退化趋势预测方法。采用小波降噪-排列熵法构建性态退化指标集,将该指标集输入QWGRUNN完成旋转机械性态退化趋势预测。QWGRUNN在门限重复单元(Gated Recurrent Unit,GRU)基础上引入量子位来表示网络权值和活性值并构造量子相移门以实现权值量子位和活性值量子位的更新,改善了网络泛化能力,进而提高了所提出的性态退化趋势预测方法的预测精度;采用与自身结构相适应的动态学习参数,改善了网络收敛速度,进而提高了所提出的预测方法的计算效率。滚动轴承性态退化趋势预测实例验证了该方法的有效性。
- 单位