摘要
为提高道岔故障诊断精度,提出一种基于粒子群算法(particle swarm optimization,PSO)优化反向传播(back propagation,BP)神经网络的道岔故障诊断法.先利用基于道岔转换状态、时间固定分段、时域统计指标的三种方式提取动作电流特征参数,以降低特征维度;再据三种特征提取方式分别建立基于PSO-BP神经网络的诊断模型.仿真实验结果表明,采用基于时域统计指标的特征提取方式能更有效提取动作电流的变化信息,利用PSO优化BP神经网络可实现网络参数的自动寻优,提高网络对故障分类的效果.
-
单位兰州交通大学; 中铁西北科学研究院有限公司; 土木工程学院