摘要

【目的】马尾松是我国南方主要造林树种,其根部水分含量是评价树木活力的重要指标。本研究构建了一种基于近红外光谱(near infrared spectroscopy,NIRS)的马尾松苗木根部含水量预测模型。【方法】首先采集根部近红外光谱数据,然后利用可变加权堆叠自动编码器结合支持向量回归构建预测模型。可变加权堆叠自编码器用来逐层提取与输出相关的特征,支持向量回归根据自编码器生成的特征实现了含水量更精确预测。【结果】与其他常用模型的结果相比,提出的模型在马尾松苗木根部水分预测中可以达到最佳性能,校正集中决定系数达到0.970 8,均方根误差为0.635 8;预测集中决定系数达到0.941 3,均方根误差为1.027 0。【结论】基于近红外光谱技术,可变加权堆叠自动编码器与支持向量回归相结合可实现马尾松苗木根部含水量准确预测。