摘要
随着智能电网系统的快速发展,为提升热故障的准确定位,图像融合技术得到了广泛的关注。文中以变电站电气设备可见光和红外图像为研究对象,通过深度学习方法设计网络模型,以自动编码器为主干网络,其中编码器采用设计的密集连接分支和加强分支双分支网络结构,一个分支为密集连接分支,使用密集块连接和自注意力机制来提取边缘和细节特征,另一个分支为加强分支,采用改进的特征金字塔结构(Feature Pyramid Network,FPN),增强全局信息。文中通过双分支结构得到两组相应特征,采用L1-范数融合策略将特征进行融合后输入解码器重建融合图像。经过与多种方法对比,文中方法从主观视觉评价、客观图像融合评价指标两方面验证了该算法的先进性,其中客观评价指标Q_(MI)、SSIM、FMI_(pixel)分别为0.567 26、0.593 47、0.887 60,达到最高值,证明融合图像质量得到提升,适用于电气设备多源图像融合。
- 单位