摘要
大数据时代,文本分类是文本数据挖掘和文本价值探索领域的重要工作。传统的文本分类系统存在特征提取能力弱、分类准确率不高的问题。相对于传统的文本分类技术,深度学习技术具有准确率高、特征提取有效等诸多优势,有必要将深度学习技术引入文本分类系统,以解决传统文本分类系统存在的问题。在分析传统文本分类系统的基础上,提出了基于深度学习的文本分类系统的体系架构和关键技术,同时对传统分类模型、TextCNN、CNN+LSTM多种分类模型进行了验证比对。
-
单位中国电信股份有限公司上海研究院