摘要
利用Leray-Schauder非线性抉择定理和锥不动点定理证明一类一维非线性奇异p-Laplacian三点边值问题{(Φ(u′))′+q(t)f(u(t))=0,0<t<1,u(0)=0,u(1)=αu(η),0<η<1,0<α<1存在一个正解u∈C[0,1]∩C1(0,1],在(0,1]上u>0,其中Φ(s)=s p-2s,p>1,允许q(t)在t=0有奇性,并且非线性项f在u=0处具有奇性.
-
单位东北师范大学人文学院; 海南师范大学