摘要
多源迁移学习利用多个源域的有效信息来增强目标域的性能,当目标域数据以数据流的形式到达,就被称为多源在线迁移学习。然而,目标域的类别分布有时是不平衡的,针对目标域每次以在线方式到达多个数据的不平衡二分类问题,本文提出了一种可以对目标域样本过采样的多源在线迁移学习算法。该算法从前面批次的样本中寻找当前批次的样本的k近邻,先少量生成多数类样本,再生成少数类使得当前批次样本的类别分布平衡。每个批次合成样本和真实样本一同训练目标域函数,从而提升目标域函数的分类性能。同时,分别设计了在目标域的输入空间和特征空间过采样的方法,并且在多个真实世界数据集上进行了综合实验,证明了所提出算法的有效性。
- 单位