摘要

混凝土裂隙几何信息识别的精确度,影响后期工程的安全。而传统的检测方法存在对裂隙识别不准、不全、不即时的缺陷,无法满足精度和实效性的现实需求。本文提出一种融合自注意力机制与全卷积神经网络的图像分割算法,以混凝土裂隙图像建立数据集,搭建深度学习网络;以全卷积神经网络训练模型,使用空间自注意力模块调整特征编码,输出基于自注意力机制模块识别的高精度二值图。经精准率、召回率、平均交并比和综合评价指标等维度同传统图像分割方法进行对比,结果显示,本文方法得到的混凝土裂隙二值图与原图最相近,在定量上精准率、召回率、平均交并比和综合评价指标分别达到62.93%,88.08%,72.21%和83.86%,进而验证本文提出的方法优于传统方法裂隙识别方法。

全文