摘要
剩余使用寿命(Remaining useful life, RUL)预测是大型设备故障预测与健康管理(Prognostics and health management, PHM)的重要环节,对于降低设备维修成本和避免灾难性故障具有重要意义.针对RUL预测,首次提出一种基于多变量分析的时序图推理模型(Multivariate similarity temporal knowledge graph, MSTKG),通过捕捉设备各部件的运行状态耦合关系及其变化趋势,挖掘其中蕴含的设备性能退化信息,为寿命预测提供有效依据.首先,设计时序图结构,形式化表达各部件不同工作周期的关联关系.其次,提出联合图卷积神经网络(Convolutional neural network, CNN)和门控循环单元(Gated recurrent unit, GRU)的深度推理网络,建模并学习设备各部件工作状态的时空演化过程,并结合回归分析,得到剩余使用寿命预测结果.最后,与现有预测方法相比,所提方法能够显式建模并利用设备部件耦合关系的变化信息,仿真实验结果验证了该方法的优越性.
- 单位