摘要
为检验深度学习方法对不同品种玉米雄穗在不同生育时期的分割精度和稳定性,利用2019年7月—9月于河南省新乡市中国农业科学院试验基地内采集的RGB影像,通过构建以轻量级网络为特征提取层的PspNet、DeepLab V3+、SegNet和U-Net 4种模型,比较不同模型对玉米雄穗分割精度的差异。结果显示:U-Net模型对不同生育时期玉米品种的雄穗分割精度最高(m IoU=0.780)。该模型在玉米雄穗不同生长阶段的分割精度总体上较好(mIoU=0.703~0.798),其中在完全抽雄期的分割精度最高(m IoU=0.798);U-Net模型对不同玉米品种的雄穗分割精度差异明显,但对所有玉米品种雄穗的平均分割精度较高(mIoU=0.749),其中对郑单958(ZD958)的分割精度最高(m IoU=0.814)。表明U-Net模型对玉米雄穗分割具有较好的普适性与鲁棒性,为今后玉米表型试验中对雄穗的监测提供了一种有效的方法。
- 单位