摘要

为了有效识别不同类型的超声缺陷信号,提出了一种基于小波包分解和主成分分析(Principal Component Analysis,PCA)的信号特征提取方法。首先,提取缺陷信号小波包分解后的能量系数组成多维特征向量集;然后,使用PCA方法对多维特征向量进行降维得到融合特征量;最后,输入BP神经网络对不同类型的缺陷信号进行分类测试,并与未经PCA处理的特征量分类测试结果进行对比。试验结果证明,该特征量提取的方法能够有效地对缺陷进行分类,且测试速度明显得到提高。