摘要

针对支持向量机的可解释性,提出了一种基于SVM-RFE特征选择的规则提取方法。这一方法在预处理阶段采用优化的SVM-RFE来获取重要属性集,并设计和实现一种变型的顺序覆盖规则算法进行规则生成和裁剪,以兼顾可理解性与准确率和忠实度之间的平衡。仿真实验表明,这一方法准确率较高,产生的规则数量和条件项数也比较少。