摘要
针对动态输出多样本条件下的多备选仿真模型择优问题,提出了一种基于孪生卷积神经网络(siamese convolutional neural network, SCNN)的仿真模型智能排序评估方法。首先,将仿真数据和参考数据的一致性度量问题转化为二者特征一致性度量问题。其次,在分析评估数据特点和对比试验结果的基础上,确定采用SCNN实现评估数据的特征提取。接下来,给出基于SCNN的仿真模型排序评估方法,包括网络结构初步设计、网络参数训练调优和仿真模型排序评估三部分。最后,通过实例应用,验证了该方法在评估数据特征提取和仿真模型排序评估方面的有效性。
- 单位