摘要

为了探测车辆间的相对距离,避免危险车辆由于驾驶不当所引发的交通问题,提出一种深度学习目标识别下的跟驰车辆相对距离测定方法,避免了雷达测距的短距离局限性以及车辆未知性的缺点。该方法采用车载单目摄像机对侧后方车辆进行拍摄,实际物体和成像点之间的转换通过三坐标转换完成,利用深度网络识别目标车辆,获得目标车辆位置以及类别信息,并建立合适的测距模型,得到检测车辆与摄像头之间的相对距离,利用帧差法预测被检测车辆的行驶速度。选择河南省鹤壁市107,342国道进行试验,该路段验证了测距模型的有效性,静态测距下75 m以内相对误差控制在4%,速度误差控制在5%,因此,在检测到危险车辆的情况下,测距模型可以实现相对距离的实时准确性检测。

全文