摘要
消费金融的欺诈检测是学术界和产业界的一个重要问题,现阶段比较流行的做法是利用机器学习方法通过提取用户的固有特征来实现。随着团伙化欺诈的出现,传统的机器学习方法在欺诈用户样本数量小及特征数据不足的情况下,显得无能为力。团伙欺诈用户之间有很强的关联关系,该文利用用户间的通话数据构建用户关联网络,通过网络统计指标和DeepWalk算法提取用户节点的图特征,充分利用图的拓扑结构信息和邻居节点信息,将其与用户固有特征一起作为特征输入,使用LightGBM模型对上述多种特征进行学习。实验结果表明,采用图表示学习方法后,AUC指标与仅使用用户固有特征相比提高了7.3%。
-
单位北京邮电大学; 渤海银行股份有限公司