为了有效地解决原始极限学习机算法中由于网络输入参数选择的随机性而引起的在射频功放行为建模应用中的建模精度不理想以及不稳定的问题,粒子群优化的极限学习机算法首次被引入到射频功率放大器的行为建模当中.利用粒子群优化方法来选择原始极限学习机算法中单隐藏层前馈神经网络的输入参数(包括输入权重和偏置).对E类射频功放的行为建模实验结果表明,粒子群优化的极限学习机可以有效改进原始极限学习机对射频功率放大器的外部行为的建模和预测能力.