为提高光纤陀螺的输出精度,以天牛须搜索算法(BAS)优化后的BP神经网络模型为基学习器,采用Bagging并行集成学习算法建立了BAS-BP-Bagging温度补偿模型,并对某型号光纤陀螺进行了温度补偿实验。实验结果表明,在-40~+60℃温度变化环境下,该方法补偿后的光纤陀螺温度漂移相较于补偿前减小了近80%,相较于多项式补偿算法减小了55%,相较于BP神经网络补偿算法减小了30%左右。同时该模型在对新鲜样本的补偿过程中表现出了较为优越的泛化性能。