摘要

间歇过程的多时段特性直接影响多元统计分析过程建模的准确性。针对间歇过程多时段特性,本文提出一种基于平行因子分解2(PARAFAC2)时段划分的间歇过程故障检测方法,首先对每一个时间片矩阵进行PARAFAC2建模,得到时间片矩阵的模型控制限,然后从间歇过程初始时刻开始,按照时序依次将每个时间片添加到时间块并进行PARAFAC2建模,得到时间块矩阵的模型控制限,通过评估时间片和时间块模型控制限的差异性确定初始时段划分点,并利用时段评价划分指标(PPCI)获取最佳的时段划分结果,最后在所得结果基础上分别对各个时段构建MPCA故障检测模型,实现间歇过程故障检测。所提方法保留了间歇过程三维结构特征和数据的完整性,深入考虑了间歇过程实际运行的时序性,提高了故障检测的准确性。利用青霉素发酵过程仿真实验验证了所提方法的有效性。