摘要

该文提出一种基于熵加权属性子空间的目标社区发现方法,挖掘与用户偏好相关的社区。首先,从属性和结构两个方面综合考虑节点间的相似度,利用用户给定的样例节点及其邻居扩展得到目标社区中心点集;其次,在中心点集上,设计一种熵加权的属性权重计算方法,得到目标社区的属性子空间权重;再次,利用目标社区的属性子空间权重,基于节点的属性和结构相似度重写网络中边的权重;最后,定义社区适度函数并结合重写后网络中边的权重改进社区适度函数,以中心节点集为核心,挖掘基于用户偏好的内部连接紧密且与外部分离较好目标社区。此外,该方法可以扩展到网络中多个社区发现及离群点检测任务中。在人工网络和真实网络数据集上的实验结果验证了该文所提算法的效率和有效性。