在线评论中的用户需求识别及其演化趋势挖掘

作者:**勤; 高智姣; 乔亚楠; 李靖*; 同淑荣
来源:机械科学与技术, 2023, 42(07): 1070-1080.
DOI:10.13433/j.cnki.1003-8728.20230241

摘要

Web2.0环境下,越来越多的消费者在网络平台上购买商品,且将使用感受通过在线评论的形式表现出来,大量的在线评论数据蕴含着很多有价值的信息,企业可以利用在线评论来识别和分析用户需求,以便于后续的产品改进。本文以联想笔记本电脑的评论数据为研究对象,提出基于在线评论挖掘的用户需求识别与演化分析模型,利用SnowNLP模型、Kano模型与LDA模型,对用户评论进行分类、识别、特征情感对分析以及时间序列分析。结果表明:根据情感趋势预测,顾客对类型一、类型二和类型三的情感值呈上升趋势,类型四的情感值呈下降趋势;此外,用户对产品外观与游戏体验的关注较多。研究从时间的角度对在线评论的研究方法和模型进行了改进,可为分析用户对产品需求以及预测用户对于产品的情感趋势等研究提供参考价值。

全文