摘要
This study examines optimal investment and reinsurance policies for an insurer with the classical surplus process. It assumes that the financial market is driven by a drifted Brownian motion with coefficients modulated by an external Markov process specified by the solution to a stochastic differential equation. The goal of the insurer is to maximize the expected terminal utility. This paper derives the Hamilton-Jacobi-Bellman (HJB) equation associated with the control problem using a dynamic programming method. When the insurer admits an exponential utility function, we prove that there exists a unique and smooth solution to the HJB equation. We derive the explicit optimal investment policy by solving the HJB equation. We can also find that the optimal reinsurance policy optimizes a deterministic function. We also obtain the upper bound for ruin probability in finite time for the insurer when the insurer adopts optimal policies.
- 单位