受Peng-中心极限定理的启发,本文主要应用G-正态分布的概念,放宽Peng-中心极限定理的条件,在次线性期望下得到形式更为一般的中心极限定理.首先,将均值条件E[Xn]=ε[Xn]=0放宽为|E[Xn]|+|ε[Xn]|=O(1/n);其次,应用随机变量截断的方法,放宽随机变量的2阶矩与2+δ阶矩条件;最后,将该定理的Peng-独立性条件进行放宽,得到卷积独立随机变量的中心极限定理.