摘要
针对现有的调制分类算法大多忽略了不同特征之间的互补性和特征融合的问题,提出了一种利用深度学习模型进行特征融合的方法。该方法试图融合调制信号的时序特征和空间特征,以获得差异性更加明显的识别特征。首先,获取调制信号的A/P信号和I/Q信号;然后,搭建卷积长短时记忆模块与复数密集残差卷积模块分别提取A/P信号的时序特征和I/Q信号的空间特征并将之进行融合,获取融合互补的识别特征;最后,将识别特征输入分类网络,得到识别结果。实验结果表明,基于开源数据集,当信噪比大于5dB时,识别率达到了93.25%,与基于单一特征识别相比,识别准确率高出3%~11%;利用实际采集数据进行分类识别,进一步证实了所提特征提取模型与融合策略的有效性。
- 单位