摘要
本文以钢城区2个丘陵村耕地土壤为研究对象,通过野外采样、自然风干、化验分析、高光谱测定及数据处理等,确定最佳高光谱变换方式并筛选显著性波段,建立随机森林(RF)、支持向量机(SVM)、偏最小二乘回归(PLSR)和多元逐步回归(SMLR)4种估测模型,对比分析确定最佳估测模型。结果表明:高光谱变换处理可以扩大光谱曲线特征,提高与机质含量的相关性;一阶微分R’为最佳高光谱变换方式,筛选出706、1002、1359、1415、1886、1914和2221 nm 7个波段作为估测土壤有机质含量的显著性波段;建立的4种估测模型中,RF模型精度最高,其训练样本集R2和RPD分别达到0.93、3.13,验证样本集R2和RPD为0.73、1.87。因此,研究构建的R’-RF土壤有机质含量高光谱估测模型可为该丘陵区有机质含量的快速监测提供参考。
- 单位