摘要
为解决舌象分类算法容易受到面部无关信息以及舌部杂质信息的干扰,造成分类准确率下降的问题,设计一种融合注意力机制的多阶段舌象分类算法。通过舌部定位阶段提取不同感受视野的舌象特征进行融合,获得舌部区域,减轻面部信息干扰;在舌象分类阶段基于舌部区域,借助注意力机制模块抑制舌部杂质信息的干扰,提取精准特征,进行分类。将算法得到分类结果的P、R、F值与KNN、SVM和Inception-V4的作比较,结果均优于这3种算法。
-
单位中国科学院自动化研究所; 中国科学院大学; 中国科学院微电子所