摘要

长尾识别是目前深度学习领域最热门的研究方向之一,长尾识别的工作重点是解决长尾分布数据的计算机视觉识别任务.长尾分布的显著特征为2-8分布,即20%的类占据80%的样本.将少数几个类占据了大部分数据的类称之为头部类;而大多数类占据了很少部分数据的类称之为尾部类.首先,列举解决长尾识别问题的各种方法.然后,将其划分为重采样、重加权、迁移学习、解耦特征学习和分类器学习以及其他方法进行阐述.最后,阐述对相关方法的理解.