摘要
针对滚动轴承振动信号具有非线性、非平稳性和非高斯性,并且故障特征往往淹没于系统噪声之中而难于识别的问题,提出了以多种群差分进化(multiple population differential evolution, MPDE)算法来改进集合经验模式分解(ensemble empirical mode decomposition, EEMD)的MPDE-EEMD消噪方法,并与自适应共振解调技术(adaptive resonance demodulation technique, ARDT)相结合实现故障特征提取。首先,为了解决EEMD中加入参数依靠人工选择且难以准确获取的问题,建立极值点分布特性评价函数,利用MPDE来寻优获取最佳白噪声幅值,实现EEMD自适应分解。然后,采用峭度与相关性相结合的准则对分解后的IMF分量进行自动筛选,将满足条件的有效信号进行重构,实现对原始振动信号的降噪处理。最后,采用ARDT自动确定对消噪信号进行带通滤波的带宽和中心频率,再通过包络解调提取出滤波信号的特征频率。将轴承仿真故障信号与实际故障信号用于算法的验证,结果表明MPDE-EEMD+ARDT能有效提取出轴承故障特征。
- 单位