数据丢失是面对智能车联网中的一个常见问题。鉴于此,考虑了大型和多样化车联网中的缺失数据问题。通过在智能车联网中提取公共交通模式,比较了函数估计和张量分解等方法来估计这些缺失值的优劣后,提出了张量低秩近似估计新方法,该方法在缺失数据的情况下获得流量模式,得到大规模车联路网的低秩表示。通过不同的道路车联网实验测试,表明该新方法的估计精度、数据集的偏差达到了较好的效果。