提出求解一类非线性分数阶比例延迟微分方程的样条配置法,将其等价转化为弱奇性积分方程,利用Lagrange插值函数的基本思想,求出弱奇性积分方程的近似解,给出该方法的收敛性证明和误差估计。与Ghasemi等的结果(2015年)比较,数值算例说明本方法更有效。本方法不仅对线性、弱非线性分数阶比例延迟微分方程有效,对一些强非线性分数阶比例延迟微分方程依旧有效。