摘要

目的当前的大型数据集,例如Image Net,以及一些主流的网络模型,如Res Net等能直接高效地应用于正常场景的分类,但在雾天场景下则会出现较大的精度损失。雾天场景复杂多样,大量标注雾天数据成本过高,在现有条件下,高效地利用大量已有场景的标注数据和网络模型完成雾天场景下的分类识别任务至关重要。方法本文使用了一种低成本的数据增强方法,有效减小图像在像素域上的差异。基于特征多样性和特征对抗的思想,提出多尺度特征多对抗网络,通过提取数据的多尺度特征,增强特征在特征域分布的代表性,利用对抗机制,在多个特征上减少特征域上的分布差异。通过缩小像素域和特征域分布差异,进一步减小领域偏移,提升雾天场景的分类识别精度。结果在真实的多样性雾天场景数据上,通过消融实验,使用像素域数据增强方法后,带有标签的清晰图像数据在风格上更趋向于带雾图像,总的分类精度提升了8.2%,相比其他的数据增强方法,至少提升了6.3%,同时在特征域上使用多尺度特征多对抗网络,相比其他的网络,准确率至少提升了8.0%。结论像素域数据增强以及多尺度特征多对抗网络结合的雾天图像识别方法,综合考虑了像素域和特征域的领域分布差异,结合了多尺度的丰富特征信息,同时使用多对抗来缩小雾天数据的领域偏移,在真实多样性雾天数据集上获得了更好的图像分类识别效果。