过程神经元网络的输入为时变连续函数,不能直接输入离散样本。针对该问题,提出一种基于分段线性插值函数的过程神经网络训练方法。将样本函数、过程神经元权函数的离散化数据插值为分段表示的线性函数,计算样本函数与权值函数乘积在给定采样区间上的积分,将此积分值提交给网络的隐层过程神经元,并计算网络输出。实验结果证明了该方法的有效性。