摘要

本发明公开了基于确定学习与复合学习联合的机械臂柔顺控制方法、存储介质及机器人,方法包括:首先,根据实时交互任务的跟踪误差,设计二阶阻抗模模型中的阻尼系数、刚度系数的调节策略,然后在机械臂与环境交互力回归的情况下,基于复合学习理论设计自适应神经网络阻抗控制器,最后,利用确定学习理论获取经验知识,设计常值神经网络阻抗控制器,实现机械臂的柔顺控制,保证机械臂末端动态响应遵循期望阻抗模型。本发明设计的方法不仅有效加速了神经网络对系统未知动态的学习,解决了带有未知动态的机械臂与环境交互时的安全柔顺控制,而且在保证系统稳定的前提下提高了机械臂的顺应性和适应性,减小了运动冲击。