基于海洋捕食者算法和ELM的空气质量指数预测

作者:龚荣; 谢宁新*; 李德伦; 洪丽啦
来源:广西民族大学学报(自然科学版), 2022, 28(04): 68-76.
DOI:10.16177/j.cnki.gxmzzk.2022.04.009

摘要

针对极限学习机(Extreme Learning Machine,ELM)模型参数选取敏感问题,文章提出一种改进的海洋捕食者算法(Improved Marine Predator Algorithm,IMPA)优化极限学习机的权重和偏置。首先,针对海洋捕食者算法初始种群的多样性不足,运用准反射学习策略生成高质量的初始猎物种群。其次,引入柯西变异策略更新种群,增强算法的全局寻优能力。然后,运用纵横交叉策略对猎物种群进行修正,进一步提高算法搜索精度。最后,将改进后的海洋捕食者算法优化极限学习机的权重和偏置,构建了一种IMPA-ELM预测模型用于空气质量指数预测。实验结果表明,IMPA-ELM预测模型在空气质量指数预测精度上有所提高。