摘要
为科学评价围岩稳定性,本次研究借助支持向量机(SVM)处理小样本、非线性问题能力强的特性,对围岩的稳定性进行了分类。选取16组围岩数据作为学习样本,以岩石质量指标、岩石单轴饱和抗压强度、完整性系数、结构面强度系数和地下水渗水量5个指标作为模型输入,围岩稳定程度为模型输出,建立了基于支持向量机的围岩稳定性分类模型。为增强模型的推广性能,提高其预测准确率,运用改进的网格搜索方法(GSM)寻找最优的支持向量机参数,并对8组围岩数据进行预测,并同BP神经网络模型的预测结果进行对比。结果表明,建立的GSM-SVM模型对预测样本的评判结果与实际结果一致,其预测精度较BP神经网络有很大的提升。
-
单位河北地质大学; 河北省地震局