一种雨雾背景的DeRF-YOLOv3-X目标检测方法

作者:杨坤志; 闫潇宁; 孙健; 许能华; 陈晓艳
来源:传感技术学报, 2022, 35(09): 1222-1229.
DOI:10.3969/j.issn.1004-1699.2022.09.010

摘要

提出了一种新型的目标检测方法DeRF-YOLOv3-X(Derain and Defog-YOLOv3-Xception),将Xception引入YOLOv3网络以提高雨雾天气条件下行人和车辆的目标检测准确性。对于雨雾背景,分别采用残差网络和负映射结合的深度细节网络DDN和基于注意力机制的多尺度网络GridDehazeNet进行去雨去雾处理;采用Xception替换YOLOv3中Darknet-53网络,同时将回归损失函数由IoU改进为DIoU,提高特征提取能力以及框定位准确率。在公开数据集ImageNet上进行主干网络的测试;在实际场景数据集上进行YOLOv3-X网络和DeRF-YOLOv3-X网络的测试。实验结果表明,提出的DeRF-YOLOv3-X目标检测网络在雨天背景下mAP值提高了5.92%,达到54.99%;在雾天背景下,mAP值也提高了4.22%,达到49.07%。

全文