摘要

针对当前人体行为识别准确率低、计算量大等缺陷,提出了一种基于三维卷积神经网络(3D Convolutionnal Neural Network,3D-CNN)结合批量归一化(Batch Normalization,BN)及改进的视觉几何组(Visual Geometry Group,VGG)网络的行为识别算法。该算法首先对3D-CNN结构进行优化,在三维空间采用了多个小卷积核卷积层堆叠的Block结构;同时在网络结构中引入BN算法,将卷积层输出的特征图每一维进行独立的批量归一化处理;之后在Block结构中增加了Dropout层以提高网络泛化能力以及将3D-CNN网络层数加深到了13层,提高了高层次抽象特征的提取能力;最终使用softmax进行分类得出结果。实验结果表明所设计的3D-BN-VGG网络在行为识别方面有较高的识别率。