摘要
为探究基于三维卷积神经网络模型应用吉林一号光谱卫星数据的森林类型分类效果,以安图县与敦化市交界地带为研究区,采用吉林一号光谱卫星影像为主要数据源,基于三维卷积神经网络深度学习模型对研究区森林类型进行分类,并与传统的随机森林分类方法进行对比分析。结果表明:当三维卷积神经网络的训练样本数量为2 400,训练次数为70 000时,分类效果最佳。基于三维卷积神经网络方法的总体分类精度为92.9%,Kappa系数为0.92;与随机森林方法分类结果对比,总体分类精度和Kappa系数分别提高了2.8百分点和0.03;三维卷积神经网络能够更加充分地利用遥感影像丰富的光谱信息和空间信息,提高森林类型的分类精度,在斑块构成和景观破碎度方面均得到较大提升,内部完整度较高,破碎化程度较轻微,更贴合实际工作需要。说明国产吉林一号光谱卫星遥感数据可以有效地对森林类型进行识别,在林业的生产经营上具有极大的应用潜力。
-
单位吉林大学; 长光卫星技术有限公司; 吉林省林业科学研究院