异常检测方法在电力领域有着广泛的应用,如设备故障检测和异常用电检测等.改进了传统Kmeans聚类随机选择初始聚类中心的策略;结合数据对象的密集度与最大近邻半径,选择更加接近实际簇中心的数据点作为初始聚类中心,并在此基础上提出了一种基于改进K-means算法的电力数据异常检测新方法.实验表明,上述算法具有更优的聚类效果和异常检测性能,并且在应用于电力领域时,算法可以有效地检测出异常电力数据.