摘要

虚拟人脸生成技术是计算机视觉领域中备受关注的研究方向之一,随着深度学习的不断发展,基于各类生成对抗网络的虚拟人脸生成技术逐渐成了研究的热点。针对虚拟人脸生成技术的研究,提出了一种基于StyleGAN的虚拟人脸生成技术。算法包括训练和生成两个主要步骤。在训练阶段,采用了大规模的真实人脸数据集,结合StyleGAN的生成能力,训练出了高质量的虚拟人脸生成模型。在生成阶段,使用了训练好的模型,通过对输入噪声向量的调整以及预先对人脸的对齐,生成高度逼真的虚拟人脸图像。同时,通过引入一个Pix2Pix网络,提升了将图像映射到潜在空间的速度,大大改善了StyleGAN网络的缺点。为了验证提出的算法的有效性和优越性,进行了大量的实验和对比分析。实验结果表明,算法在生成虚拟人脸图像的逼真度、多样性和真实性等方面均有显著提高,同时还能够避免传统虚拟人脸生成技术中存在的一些缺陷和问题。