摘要
针对复杂环境下番茄叶部图像因其背景复杂导致病害识别较为困难,以温室大棚内采集的番茄叶部图像作为研究对象,对番茄白粉病、早疫病和斑潜蝇三种常见病虫害,提出一种结合颜色纹理特征的基于支持向量机(SVM)的CCL-SVM的复杂环境番茄叶部图像病害识别方法。CCL-SVM方法为实现小样本及复杂背景环境下的快速识别,首先采用滑动窗口将原始番茄叶部病害图像切割成小区域图像,选取不包含背景的小区域图像样本作为试验样本,从而实现样本数量和样本多样性的增加,并降低样本复杂背景的影响。通过对样本数据抽取颜色纹理特征(CCL),采用SVM模型对番茄早疫病、白粉病、斑潜蝇和健康叶片分类识别。试验结果表明,提出的CCL-SVM方法比Gray-SVM对番茄叶片病害种类的识别性能得到大幅提升,识别率从60.63%提升到97.5%;CCL-SVM方法识别精度高于对比的深度学习网络VGG16和Alexnet方法,且每个小区域图像的平均测试时间远低于深度学习网络。本文设计的CCL-SVM方法具有减小复杂背景影响,计算量小及系统要求低的优点,为复杂环境下番茄病害快速识别提供一种新的思路。
-
单位北京农业信息技术研究中心; 国家农业信息化工程技术研究中心; 石家庄市农林科学研究院