摘要
桥梁结构表面裂缝检测为桥梁状态识别、病害治理、安全评估提供了重要状态信息和决策依据。为解决传统人工检测方法存在的危险性高、影响交通、费用昂贵等问题,提出基于无人机(Unmanned Aerial Vehicle, UAV)及深度学习的桥梁结构裂缝智能识别方法。采用大疆M210-RTK多旋翼无人机进行贴近航摄,获取桥梁结构混凝土表面高清图像;利用SDNET裂缝数据集等图像资源,制作1 133张标记裂缝精确区域的深度学习训练样本图像库;引入掩膜区域卷积神经网络(Mask R-CNN)深度学习算法,训练和建立Mask R-CNN裂缝识别模型;基于Mask R-CNN裂缝识别模型,采用矩形滑动窗口模式扫描混凝土表面高清图像,实现裂缝自动识别和定位。构建包含图像二值化、连通域去噪、边缘检测、裂缝骨架化、裂缝宽度计算等流程的图像后处理方法,实现裂缝形态及宽度信息自动获取。通过精度验证试验,证实采用M210-RTK无人机+ZENMUSE X5S相机+45 mm奥林巴斯镜头的组合装备,当无人机至桥梁结构表面垂直距离为10.0 m时,无人机方法识别的裂缝宽度与裂缝测量仪结果吻合,其绝对误差小于0.097 mm,相对误差小于9.8%。将该无人机裂缝检测方法应用于高136.8 m长沙市洪山大桥桥塔表面裂缝检测,采用深度学习Mask R-CNN算法进行裂缝智能识别,其裂缝识别准确率和召回率分别达到92.5%和92.5%。研究结果表明:无人机桥梁裂缝检测方法可实现高耸桥梁结构表面裂缝的远程、非接触、自动化检测,具有重要的科学研究和工程应用价值。
-
单位土木工程学院; 湖南大学