从基于传统特征和基于深度学习两方面对自动驾驶技术进行了综述.首先论述了基于传统特征的自动驾驶技术,如道路与车道线的检测、前车检测、行人检测和防撞系统等,由于识别目标种类繁多,基于传统特征的目标检测遇到了很难超越的瓶颈;接着阐述了基于深度学习的自动驾驶算法,采用卷积神经网可以直接学习和感知路面及道路上的车辆,可大幅度提升自动驾驶算法的性能;最后总结全文,并展望了未来的研究方向,即整合传统特征和深度学习特征,进一步提升深度驾驶的拟人化和实用化水平.