摘要

为了实现电机轴承故障的准确诊断,必须提取更加准确有效的故障特征。针对上述问题,提出基于小波包分解(WPD)和希尔伯特黄变换(HHT)的故障特征提取方法,并用神经网络进行诊断验证。小波包分解对信号突变检测优于HHT,HHT在低频检测部分比小波包分解更加有优势。结合两种算法的优点,采用小波包分解提取高频段能量特征,并利用HHT对小波包重构的低频信号进一步分析得到低频段能量特征。仿真结果表明,上述算法能够准确诊断出故障类型,提高了轴承故障诊断的准确率。通过与常见的倒频谱分析、WVD方法对比,验证了所提算法的有效性和优越性。