摘要

生成函数刻画了正交多项式的很多重要性质.本文的主要目的是根据生成函数的特点研究正交多项式类之间的渐近关系.本文拓展了Lee及其合作者的工作,构造一类双正交多项式系统,并由此构造出分别渐近于Hermite多项式和广义Laguerre多项的函数列;给出渐近于Hermite多项式和广义Laguerre多项的函数列的判定定理.作为这些性质的应用,可以直接获得若干正交多项式和组合多项式的渐近表示,从而验证了揭示超几何多项式渐近关系的Askey格式成立.