摘要

为降低文本特征空间维度,提高数据挖掘处理数据的效率,提出两阶段文本特征选择算法。结合方差和平均中位数2种方法构建高相关性的特征子集进行初步降维,并将其作为差分进化算法的初始特征种群。利用特征词的累计词频和文档频率设计适应度函数,将多个特征差向量和局部最优特征引入变异操作中,增加特征子集的扰动性,加快差分进化算法的收敛速度,获得最优特征子集。在WebKB和Reuters-21578数据集上进行实验,结果表明,该算法在准确率、召回率和F1值上均优于TDM5、MADAC等算法,能够降低文本特征空间的维度,提高文本聚类效果。

全文