摘要

针对无人机自主避障与目标追踪问题,以深度Q网络(DQN)算法为基础,提出一种多经验池深度Q网络(MP-DQN)算法,使无人机避障与追踪的成功率和算法的收敛性得到优化。更进一步,赋予无人机环境感知能力,并在奖励函数中设计了方向奖惩函数,提升了无人机对环境的泛化能力以及算法的整体性能。仿真结果表明,相较于DQN和双重DQN(DDQN)算法,MP-DQN算法具有更快的收敛速度、更短的追踪路径和更强的环境适应性。