摘要

理论容量大且过电位低的层状氢氧化物(LDHs)是极有前景的超级电容电池和析氧反应的电极材料;然而,体相LDHs的低电导率和活性位点不足增加了电极的内阻,降低了电极容量和产氧效率.本文采用两步法制备了聚苯胺包覆的MoO42-插层的镍钴层状双金属氢氧化物复合电极(M-LDH@PANI).随着LDH中MoO42-含量的增加,针状的LDH微球逐渐演化为具有较高比表面积的片状M-LDH微球,这为整个电极提供了更多的电化学位点.此外,非晶态的聚苯胺包覆提高了复合电极的电导率.在引入适量MoO42-插层离子时, M-LDH@PANI表现出显著强化的储能和催化性能.所获得的M-LDH@PANI-0.5在析氧反应中表现出优越的电催化活性(10 mA cm-2时的过电位为266 mV),作为超级电容电池电极则具有864.8 C g-1的高容量.采用M-LDH@PANI-0.5作为正极及以活性炭作为负极组装的超级电容电池在功率密度为8,300.0 W kg-1时能量密度为44.6 Wh kg-1,且具有优异的循环稳定性(10000次循环后保留83.9%的初始容量).本文为LDH基材料的阴离子插层改性增强材料性能的机理提供了一个非传统的解释.在上述研究基础上,采用射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、高分辨透射电镜(HRTEM)和比表面积测试(BET)等手段对样品进行了深入表征.XRD结果表明, MoO42-插层的LDH材料的层间晶面(003)的峰随着MoO42-含量的增加而逐渐消失,这是由于晶面间距越大越容易受到晶粒细化的影响,间距大的晶格更容易受到破坏,导致晶格的展宽和弱化,从而间接证明MoO42-的成功插层.SEM、HRTEM和BET测试结果表明, MoO42-的含量对材料的形貌和比表面积具有重大影响.利用XPS对样品的价态进行了研究,发现随着MoO42-含量的增加, Co和Ni的价态没有明显变化.电化学测试结果表明,电极的储能和催化性能随MoO42-含量的增加而先增加后减小.利用理论计算分析了MoO42-在LDH中的插层行为,发现少量的MoO42-有利于扩大LDH的层间间距,而过量的MoO42-则会与LDH的H原子结合,从而与电解液中的OH-竞争,导致复合电极的电化学性能下降.此外, MoO42-插层的片状微球能有效调节材料的去质子化能,大大加速电极表面的氧化还原反应.因此, MoO42-插层能够显著强化LDH基材料的超级电容电池电极和OER催化剂电化学性能.